The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells.
نویسندگان
چکیده
Oral squamous cell carcinomas (OSCCs) are malignant tumors that frequently invade the maxilla and mandibular bone. However, the molecular mechanisms underlying bone invasion by OSCC are unclear. Recent studies showed that receptor activator of nuclear factor κB (RANK) was expressed not only in osteoclast precursors but also in tumor cells. Therefore, we examined whether RANK ligand (RANKL)/RANK signaling regulates bone invasion by OSCC cells in vivo and in vitro. We first injected human OSCC B88 cells into the masseter region of nude mice. Mice were treated for 3 weeks with osteoprotegerin (OPG), the decoy receptor for RANKL. Treatment with OPG decreased bone invasion by B88 cells, reduced the number of osteoclasts and increased B88 cell apoptosis. However, OPG did not affect apoptosis and proliferation in B88 cells in vitro, suggesting that the effects of OPG on apoptosis in B88 cells are restricted in a bone environment. RANK was expressed in the B88 cells and in OSCC cells from patients. RANKL induced NF-κB activation and extracellular signal-regulated kinase phosphorylation in B88 cells and enhanced B88 cell migration in a modified chemotaxis chamber equipped with a gelatin-coated filter. OPG inhibited RANKL-induced NF-κB activation, extracellular signal-regulated kinase phosphorylation and cell migration. Our data clearly indicate that RANKL/RANK inhibition suppresses bone invasion by inhibiting osteoclastogenesis and cancer cell migration and by inducing apoptosis of cancer cells via indirect anticancer action in vivo.
منابع مشابه
The RANKL/RANK system as a therapeutic target for bone invasion by oral squamous cell carcinoma (Review).
Squamous cell carcinomas (SCCs) of the gingiva frequently invade the mandible or maxilla; this invasion is associated with a worse prognosis. The bone destruction associated with carcinomal invasion is mediated by osteoclasts rather than directly by the carcinoma. Therefore, if the cellular and molecular mechanisms by which oral SCC regulates bone...
متن کاملEffect of YM529 on a model of mandibular invasion by oral squamous cell carcinoma in mice.
PURPOSE This study examined the mechanisms of osteoclast-mediated bone invasion in a model of oral squamous cell carcinoma (OSCC). C3H/HeN mice were inoculated with SCC VII cells into the masseter region to establish an animal model of mandibular invasion by OSCC. EXPERIMENTAL DESIGN The mice were divided into three groups: a control group, given daily s.c. injections of saline; group 1, give...
متن کاملThe novel IκB kinase β inhibitor IMD-0560 prevents bone invasion by oral squamous cell carcinoma
Oral squamous cell carcinoma (OSCC) cells display significantly augmented nuclear factor-κB (NF-κB) activity, and inhibiting this activity suppresses malignant tumor characteristics. Thus, we evaluated the effect of IMD-0560, a novel inhibitor of IκB kinase (IKK) β that is under assessment in a clinical trial of rheumatoid arthritis, on bone invasion by the mouse OSCC cell line SCCVII. We exami...
متن کاملCombined Hydroxyapatite Scaffold and Stem Cell from Human Exfoliated Deciduous Teeth Modulating Alveolar Bone Regeneration via Regulating Receptor Activator of Nuclear Factor-Κb and Osteoprotegerin System
Background: Tissue engineering using Stem cell from Human Exfoliated Deciduous Teeth (SHED) and a natural biomaterials biomaterial scaffold has become a promising therapy for the alveolar bone defect. The aim of this study was to analyze the Osteoprotegerin (OPG) and Receptor Activator of NF-Κb ligand (RANKL) expression after the application of Hydroxyapatite scaffold and SHED.Methods: A labora...
متن کاملA novel function of CXCL13 to stimulate RANK ligand expression in oral squamous cell carcinoma cells.
Oral squamous cell carcinomas (OSCC) are malignant tumors with a potent activity of local bone invasion/osteolysis. The chemokine ligand, CXCL13, has been identified as a prognostic marker for OSCC development and progression. Here in, we show that recombinant hCXCL13 treatment of OSCC cells stimulates (5-fold) RANK ligand (RANKL), a critical bone resorbing osteoclastogenic factor expression. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 32 11 شماره
صفحات -
تاریخ انتشار 2011